Evaluation of gel-pad oligonucleotide microarray technology by using artificial neural networks.

نویسندگان

  • Alex Pozhitkov
  • Boris Chernov
  • Gennadiy Yershov
  • Peter A Noble
چکیده

Past studies have suggested that thermal dissociation analysis of nucleic acids hybridized to DNA microarrays would improve discrimination among duplex types by scanning through a broad range of stringency conditions. To more fully constrain the utility of this approach using a previously described gel-pad microarray format, artificial neural networks (NNs) were trained to recognize noisy or low-quality data, as might derive from nonspecific fluorescence, poor hybridization, or compromised data collection. The NNs were trained to classify dissociation profiles (melts) into groups based on selected characteristics (e.g., initial signal intensity, area under the curve) using a data set of 21,044 profiles derived from 186 probes hybridized to a study set of RNA extracted from 32 microbes common to the human oral cavity. Three melt profile groups were identified: one group consisted mostly of ideal melt profiles; another group consisted mostly of poor melt profiles; and, the remainder were difficult to classify. Screening of melting profiles of perfect-match hybrids revealed inconsistencies in the form of melting profiles even for identical probes on the same microarray hybridized to same target rRNA. Approximately 18% of perfect-match duplex types were correctly classified as poor. Experimental variability and deviation from ideal melt behavior were shown to be attributable primarily to a method of local background subtraction that was very sensitive to displacement of the grid frames used for image capture (both determined by the image analysis system) and duplexes with low binding constants. Additional results showed that long RNA fragments limit the discriminating power among duplex types.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of effects of operating parameters on combustible material recovery in coking coal flotation process using artificial neural networks

In this research work, the effects of flotation parameters on coking coal flotation combustible material recovery (CMR) were studied by the artificial neural networks (ANNs) method. The input parameters of the network were the pulp solid weight content, pH, collector dosage, frother dosage, conditioning time, flotation retention time, feed ash content, and rotor rotation speed. In order to sele...

متن کامل

A hybrid approach to supplier performance evaluation using artificial neural network: a case study in automobile industry

For many years, purchasing and supplier performance evaluation have been discussed in both academic and industrial circles to improve buyer-supplier relationship. In this study, a novel model is presented to evaluate supplier performance according to different purchasing classes. In the proposed method, clustering analysis is applied to develop purchasing portfolio model using available data in...

متن کامل

Prediction the Return Fluctuations with Artificial Neural Networks' Approach

Time changes of return, inefficiency studies performed and presence of effective factors on share return rate are caused development modern and intelligent methods in estimation and evaluation of share return in stock companies. Aim of this research is prediction of return using financial variables with artificial neural network approach. Therefore, the statistical population of this study incl...

متن کامل

Estimation of Products Final Price Using Bayesian Analysis Generalized Poisson Model and Artificial Neural Networks

Estimating the final price of products is of great importance. For manufacturing companies proposing a final price is only possible after the design process over. These companies propose an approximate initial price of the required products to the customers for which some of time and money is required. Here using the existing data of already designed transformers and utilizing the bayesian anal...

متن کامل

Evaluation of Ultimate Torsional Strength of Reinforcement Concrete Beams Using Finite Element Analysis and Artificial Neural Network

Due to lack of theory of elasticity, estimation of ultimate torsional strength of reinforcement concrete beams is a difficult task. Therefore, the finite element methods could be applied for determination of strength of concrete beams. Furthermore, for complicated, highly nonlinear and ambiguous status, artificial neural networks are appropriate tools for prediction of behavior of such states. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 71 12  شماره 

صفحات  -

تاریخ انتشار 2005